Tuning the ion selectivity of glutamate transporter–associated uncoupled conductances
نویسندگان
چکیده
The concentration of glutamate within a glutamatergic synapse is tightly regulated by excitatory amino acid transporters (EAATs). In addition to their primary role in clearing extracellular glutamate, the EAATs also possess a thermodynamically uncoupled Cl(-) conductance. This conductance is activated by the binding of substrate and Na(+), but the direction of Cl(-) flux is independent of the rate or direction of substrate transport; thus, the two processes are thermodynamically uncoupled. A recent molecular dynamics study of the archaeal EAAT homologue GltPh (an aspartate transporter from Pyrococcus horikoshii) identified an aqueous pore at the interface of the transport and trimerization domains, through which anions could permeate, and it was suggested that an arginine residue at the most restricted part of this pathway might play a role in determining anion selectivity. In this study, we mutate this arginine to a histidine in the human glutamate transporter EAAT1 and investigate the role of the protonation state of this residue on anion selectivity and transporter function. Our results demonstrate that a positive charge at this position is crucial for determining anion versus cation selectivity of the uncoupled conductance of EAAT1. In addition, because the nature of this residue influences the turnover rate of EAAT1, we reveal an intrinsic link between the elevator movement of the transport domain and the Cl(-) channel.
منابع مشابه
Coupled, but not uncoupled, fluxes in a neuronal glutamate transporter can be activated by lithium ions.
In the central nervous system a family of related (Na(+)-K(+))-coupled glutamate transporters remove the transmitter from the cleft and prevent its neurotoxic actions. In addition to this coupled uptake, these transporters also mediate a sodium- and glutamate-dependent uncoupled anion conductance. Most models assume that the initial steps for both processes are the same, leading to the anticipa...
متن کاملDistinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1.
Glutamate transport by the excitatory amino acid transporters (EAATs) is coupled to the co-transport of 3 Na(+), 1 H(+), and the counter-transport of 1 K(+) ion. In addition to coupled ion fluxes, glutamate and Na(+) binding to the transporter activates a thermodynamically uncoupled anion conductance through the transporter. In this study, we have distinguished between these two conductance sta...
متن کاملExcitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance.
Although a glutamate-gated chloride conductance with the properties of a sodium-dependent glutamate transporter has been described in vertebrate retinal photoreceptors and bipolar cells, the molecular species underlying this conductance has not yet been identified. We now report the cloning and functional characterization of a human excitatory amino acid transporter, EAAT5, expressed primarily ...
متن کاملComparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters.
The transport of glutamate across the plasma membrane is coupled to the movement of cations (Na+, K+, and H+) that are necessary for glutamate uptake and transporter cycling as well as anions that are uncoupled from the flux of glutamate. Although the relationship between these coupled (stoichiometric) and uncoupled (anion) transporter currents is poorly understood, transporter-associated anion...
متن کاملMolecular basis for differential inhibition of glutamate transporter subtypes by zinc ions.
Zinc ions (Zn2+) are stored in synaptic vesicles with glutamate in a number of regions of the brain. When released into the synapse, Zn2+ modulates the activity of various receptors and ion channels. Excitatory amino acid transporters (EAATs) maintain extracellular glutamate concentrations below toxic levels and regulate the kinetics of glutamate receptor activation. We have investigated the ac...
متن کامل